
Okhotsk Sea and Polar Oceans Research 1 (2017) 1-6 
© Okhotsk Sea and Polar Oceans Research Association
https://doi.org/10.57287/ospor.1.1 

1 

The impact of data assimilation and atmospheric forcing data on predicting 
short-term sea ice distribution along the Northern sea route

Liyanarachchi Waruna Arampath DE SILVA1 and Hajime YAMAGUCHI1 

1The University of Tokyo, Tokyo, Japan 

(Received September 16, 2016; Revised manuscript accepted October 19, 2016) 

Abstract 
With the recent rapid decrease in summer sea ice in the Arctic Ocean extending the navigation 

period in the Northern sea routes (NSR), the precise prediction of ice distribution is crucial for safe 
and efficient navigation in the Arctic Ocean. Precise ice distribution prediction in the short-term 
(5–days scale) is one of the key issues to realize safe and efficient navigation in the NSR. Ensemble 
predictions of short-term sea-ice conditions along the Northern sea route have been carried out 
using a high–resolution (about 2.5km) ice–ocean coupled model that explicitly treats ice floe 
collisions in marginal ice zones. In this study, the ensembles are constructed by using forecasted 
atmospheric forcing data sets from THORPEX Interactive Grand Global Ensemble (TIGGE) 
project in 2015. We also discussed the influence of data assimilation on high-resolution model ice 
and ocean initial conditions estimated by the whole Arctic medium-resolution (about 25 km) model. 
The correlation score of ice–edge error and sea ice concentration distribution quantifies forecast 
skill. Skill scores are computed from 5–days ensemble forecasts initialized in each month between 
May 2015 to October 2015. Comparison of different ensemble atmospheric forecasts, using 
different months initial data sets, revealed that our ice–POM numerical model skillfully predicts the 
ice distribution during the NSR operational period. The average forecast skill of ice–POM model in 
the melting season is 9.28±2.68 km and in the freezing season without assimilated initial conditions 
is 15.43±6.29 km and with assimilation 13.85±5.77 km with the 15% thresholds of ice 
concentration for the ice edge. With data assimilation, there is 10% improvement of average ice 
edge error within 5-days simulation.  
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INTRODUCTION 
Past decades of satellite observations have shown a 

rapid decrease of summer Arctic sea ice extent. 
Furthermore, the Arctic sea ice cover is now thinner, 
weaker, and drifts faster. Those conditions increase the 
interest on the commercial use of Arctic shipping. 
However, the sea ice distribution varies with hourly 
time scales due to the atmospheric and oceanic 
conditions. Therefore, sea ice predictions and 
observations are important to protect the ships and 
offshore and coastal structures in order to utilize the 
Northern sea route (NSR). Global climate models have 
been employed to assess the predictability of Arctic sea 
ice. However, most of the available numerical models 
have shown high uncertainties in the short-term (about 
5days) and narrow-area predictions, especially marginal 
ice zones such as the NSR (Hebert et al., 2015). 
Successful sea ice predictions are relying on 
comprehensive initial conditions of sea ice variables 
and ocean variables and an ability of forecast systems 
to capture high-frequency atmospheric variability and 
associated feedbacks.  

There are 2 kinds of ensemble forecasting systems 
available for sea ice predictions. First, perturbing the 
sea ice or ocean initial conditions generates the 
ensemble members. Second, changing the boundary 
conditions, such as atmospheric forcing, generates the 
ensemble members. In this study, the ensembles are 
constructed by using forecasted atmospheric forcing 
datasets from THORPEX Interactive Grand Global 
Ensemble (TIGGE; Bougeault et al., 2010) project in 
2015 and the ice and ocean conditions estimated by the 
hindcast model simulation. 

The purpose of this study is to predict the short-term 
(5days) sea ice conditions in the NSR using mesoscale 
eddy resolving ice-ocean coupled model within the ice 
edge error of ±10km, which can meet ship crew 
requirement. The correlation score of ice edge error and 
sea ice concentration distribution quantifies forecast 
skill. Skill scores are computed from 5-days ensemble 
forecasts initialized in each month between May 2015 
to October 2015. Also, we investigate the impact of sea 
ice predictions by different atmospheric forecasted 
datasets. 
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Some researchers suggest that model alone 
predictions are prone to several errors such as 
uncertainties in initial conditions, uncertainties in the 
forcing data and limitations of the temporal and spatial 
resolutions (Lindsay et al., 2006; Mudunkotuwa et al., 
2016). Therefore, in this study, we also investigated the 
impact of ice and ocean initial conditions into the 
short-term sea ice predictions by introducing data 
assimilation into the whole Arctic model. 

MODEL DESCRIPTION 
Ice–ocean coupled model used in this study is based 

on the model developed by De Silva et al. (2015). The 
ocean model is based on generalized coordinates, the 
Message Passing Interface version of the Princeton 
Ocean Model (POM; Mellor et al. (2002)). The 
level-2.5 turbulence closure scheme of Mellor and 
Yamada (1982) is used for the vertical eddy viscosity 
and diffusivity. The horizontal eddy viscosity and 
diffusivity are calculated using a formula proportional 
to the horizontal grid size and velocity gradients 
(Smagorinsky,1963); the proportionality coefficient 
chosen is 0.2. The ice thermodynamics model is based 
on the zero-layer thermodynamic model proposed by 
Semtner (1976). The ice rheological model is based on 
the elastic–viscous–plastic (EVP) rheology proposed by 
Hunke and Dukowicz (2002) and is modified to take 
ice floe collisions into account, following Sagawa and 
Yamaguchi (2006). Model domain is constructed using 
Earth Topography one-minute Gridded Elevation 
Dataset (ETOPO1) as shown in Fig. 1. 

Fig. 1 Model bathymetries (m). (a) Whole-Arctic model. 

To avoid the singularity at the North Pole, the 
whole-Arctic model grid is rotated to place its North Pole 
over the equator. Red rectangle denotes the 
high-resolution domain in the Northern Sea Route. (b) 
High-resolution regional model domain of what in this 
study we call the Laptev Sea region, consisting of the 
Laptev Sea and part of the Kara and East Siberian seas, 

with 50°E - 165°E longitudes and 68°N - 85.5°N latitudes. 
(De Silva et al. 2015) 

The zonal and meridional grid spacing are 
approximately 25 × 25 km for the whole Arctic model 
and 2.5 × 2.5 km for the high-resolution regional model. 
To resolve the surface and bottom ocean dynamics, we 
use the logarithmic distribution of the vertical sigma 
layers near the top and bottom surfaces.  

Mudunkotuwa et al. (2016) introduced the data 
assimilation into the ice-POM model. She claimed that 
assimilating sea ice variables improved the ocean and 
ice conditions. It is evident from the changes in sea ice 
extent, sea ice thickness, and ocean salinity. She also 
claimed that non-assimilated sea ice variables have also 
been indirectly improved by assimilation. In this study, 
we used the Newtonian relaxation (nudging) technique 
to assimilate the satellite observational (SSMI, 
AMSR-E, and AMSR2) sea ice concentration in 24hr 
intervals from year 2000 to 2016. During assimilation 
experiment, the model estimates concentrations are 
nudged to new estimate sea ice concentration with the 
following relationship (Eq.1) 

Anew = Amodel+ K Aobs − Amodel( ) (1) 

where, Anew newly estimated sea ice concentration, 
Amodel model derived sea ice concentration, Aobs satellite 
observational sea ice concentration and K is a 
weighting constant and this study it set to be 0.8. Some 
corrections are done to adjust the sea ice thickness, 
velocity, ocean temperature and salinity while 
assimilating sea ice concentration. When the 
assimilation creates ice, the ice thickness and velocity 
are set to be the average of the four neighboring cells 
while the maximum thickness of created ice is set to be 
0.5m and the minimum is set to 0.1m to avoid 
immediate melting. When the assimilation removes ice, 
the values of other sea ice variables (sea-ice thickness 
and sea-ice velocity) are set to zero. Ocean temperature 
is also set to freezing temperature if the temperature is 
below freezing temperature. 

High-resolution computations are initialized using 
interpolated whole-Arctic model results with and 
without data assimilation (e.g., sea-ice thickness, ocean 
temperature and salinity). Note that whole-Arctic 
sea-ice concentration is not used for high-resolution 
computations; rather, satellite observations Advanced 
Microwave Radiometer2 (AMSR2) are used. When the 
initial AMSR2 sea ice concentration is not zero in the 
open water areas of the whole-Arctic simulation, we 
interpolated the sea-ice thickness from neighboring grid 
cells. In this case, water surface temperature under 
those cells was set to the freezing temperature to avoid 
the rapid melting of sea ice. Moreover, when the initial 
AMSR2 observed concentration is zero and the 
whole-Arctic simulation concentration is not zero, we 
set the sea-ice thickness to zero in those cells. For those 
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cells, the temperature under the ocean surface was 
assigned by interpolating the values only from the open 
water neighboring grid cells. Note that, in both 
situations, ocean salinity is unchanged and the same as 
the interpolated whole-Arctic model output value. In 
the marginal regions (open boundaries) of the 
high-resolution model, the whole-Arctic model results 
interpolated into the high-resolution model grids are 
applied for both the sea-ice and ocean open-boundary 
conditions with daily intervals.  

The atmospheric dataset used in this ensemble 
forecast study comes from TIGGE (Bougeault et al., 
2010) operational medium-range ensemble forecast 
project. The operational ensemble prediction systems 
used in this study include the China Metrological 
Administration (CMA), the Canadian Metrological 
center (CMC), the European Center for Medium-range 
Weather Forecasts (ECMWF), the Japan Metrological 
Agency (JMA), the France Metrological Office (FMO), 
the United Kingdom Meteorological Office (UKMO), 
and the US National Centers for Environmental 
Prediction (NCEP). The more details about the 
atmospheric forecasting and reanalysis are described in 
Bougeault et al. (2010). We used the 6-hourly 
atmospheric data outputs with the spatial resolution of 
0.5-degree; air-temperature and dev-point temperature 
at 2m height, wind at 10m height, precipitation, 
sea-level pressure, and cloud cover. Using these data, 
surface fluxes, shortwave radiation, longwave radiation, 
sensible heat flux and latent heat flux are calculated 
according to the bulk formulation proposed by 
Parkinson and Washington (1979). 

DISCUSSION 
To evaluate the sea ice predictions using different 

atmospheric datasets, we used the correlation score of 
ice edge error and sea ice concentration distribution. 
The ice edge error is defined as follows (Eq. 2). First, 
the difference in the ice areas between the model’s 
predictions and AMSR2 satellite observations are 
calculated, shown in Fig. 2. Note that area covered with 
ice concentration more than 15%, 30%, and 50% are 
taken into comparison. Because the definition of the 
opening of sea route highly depends on the ice level of 
an icebreaker. Next, dividing the length of the model 
predicted contour of the ice concentration of 15%, 30%, 
and 50%, we obtain the ice edge error with the 
dimension of length. 

ice edge error= Area enclosed by both contours

Length of model predicted ice edge
(2) 

The results of the 5days in melting season (20 to 25 
July 2015) forecasted ice edge errors and the hindcast 
ice edge error using ERA-Interim data are shown in Fig. 
3. Ocean and ice initial conditions are initialized using
the whole Arctic model alone run. There were no

significant differences of ice edge errors between 
different forecasted datasets and ERA-interim hindcast 
data. Within 5 days, average ice edge errors among 
seven-forecasted datasets are 9.28±2.68 km, 10.11±3.08 
km, 10.04±3.51 km with respect to the threshold value 
of ice concentration 15%, 30%, and 50% respectively. 
There is a slight increment in the average ice edge error 
when the threshold values of ice concentration increase 
from 15% to 50%. 

Fig. 2 Schematic diagram of model predicted (red) and 
AMSR2 (blue) observational ice edges and area 
enclosed by both contours (yellow) 

Fig. 3 Ice edge error between different forecasted datasets 
(and ERA-interim) and AMSR2 observations from 21- 
July-2015 to 25-July-2015 Top threshold value of ice 
concentration (a) 15% (b) 30% and (c) 50% 

During the computation period, the JMA showed 
best ice edge error prediction of 8.89±2.57 km. Overall, 
in melting season ice-POM model reproduced the ice 
edge error within the limit of 10km.   

In addition to the quantitative comparisons of ice 
edge error, we compared the sea-ice concentration 
distribution qualitatively. Fig. 4 shows the difference 
between the model and AMSR2 sea ice concentrations 
after the 5th day of computation (25 July 2015). In the 
western part of the domain (Kara sea), the difference in 
sea ice concentration is higher compared to the other 

Area enclosed by 
both contours 

AMSR2 ice edge Model predicted 
ice edge 

Ocean 

Ice 
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regions. This discrepancy could be due to the 
underestimation of heat transfer process between ice 
and ocean. However, sea ice spatial distribution 
between different datasets has no significant differences 
in the melting season. 

Fig. 4 Sea ice concentration distribution, Difference 
between model-predicted ice concentration and 
AMSR2 observation on 25-July-2015. Threshold value 
of ice concentration is 15% 

Next, the results of the 5days in the period of Arctic 
annual minimum sea ice extent (10 to 15 September 
2015) forecasted ice edge error and the hindcast ice 
edge error using ERA-Interim data is shown in Fig. 5. 
Except for CMA dataset there were no significant 
differences of ice edge error between different 
forecasted datasets. The average ice edge errors with 
respect to the different ice concentration threshold 
values are 15% threshold value 10.15±3.45 km, 30% 
threshold value 10.56±2.8 km and 50% threshold value 
12.87±2.15 km. There is a slight increment in the 
average ice edge error when the threshold values of ice 
concentration increase from 15% to 50%. 

Finally, the results of the 5days in freezing season 
(10 to 15 October 2015) forecasted ice edge error and 
the hindcast ice edge error using ERA-Interim data is 
shown in Fig. 6. There were significant differences of 
ice edge error between different forecasted datasets and 
ERA-interim hindcast data after the 2nd day (12- Oct. 
2015) of computation. The average ice edge errors with 
respect to the different ice concentration threshold 
values are 15% threshold value 15.43±6.29 km, 30% 

threshold value 16.56±7.08 km and 50% threshold 
value 19.76±8.98 km. There is a significant increment 
in the average ice edge error when the threshold values 
of ice concentration increase from 15% to 50%.  

Fig. 5 Ice edge error between different forecasted datasets 
(and ERA-interim) and AMSR2 observations from 
11-Sep-2015 to 15-Sep-2015 (a) threshold value of ice
concentration 15% (b) 30% and (c) 50%

Fig. 6 Ice edge error between different forecasted datasets 
(and ERA-interim) and AMSR2 observations from 
11-Oct-2015 to 15-Oct-2015 (a) threshold value of ice
concentration 15% (b) 30% and (c) 50%

In most cases, the average ice edge error increases 
with the threshold values of ice concentration increase 



De Silva and Yamaguchi 

5 

from 15% to 50%. We speculate the reason for this 
issue as follows. In practice, the regions where ice 
concentration change from 15% to 50% are usually 
very narrow and subjected to the observational errors 
due to melt ponds and surface conditions of snow cover 
in melting and early freezing seasons. These issues 
might favorably affect the ice edged error calculations 
in less ice concentration areas. 

It is also seen that time evolution of ice edge error is 
significantly large in the freezing season compared to 
the melting season and annual minimum ice extent. We 
believe this discrepancy could be due to the 
uncertainties in the model initial conditions. 

The lower ice edge error values in the summer 
suggest ice-POM does a good job at capturing ice melt, 
while higher values during the freezing season suggest 
that ice-POM not produce ice as fast as actually occurs 
along the NSR. 

Several possibilities exist to explain these 
discrepancies. The first reason could be because we 
used the bulk formulation proposed by Parkinson and 
Washington (1979) to produce the heat fluxes from the 
atmosphere to sea ice and those parameters may not 
have tuned into the latest Arctic conditions properly. 
The second reason could be coarseness of spatial and 
temporal resolution of forecasted datasets could not 
properly resolve the small-scale features of the 
atmosphere (Ono et al. 2016), which influenced the sea 
ice production and retrieve. These will be the topic of 
future study. 

Fig. 7 Same as Fig. 6 but model initialized from whole 
Arctic model with assimilation results 

The third reason could be because we used ocean 
temperature and salinity data from the interpolated 
whole-Arctic model for our high-resolution 

computations as an initial condition. Over prediction of 
ocean surface heat in the whole-Arctic model delayed 
the freezing of sea ice in the high-resolution models 
freezing season. 

We have tested the third hypothesis in this study. We 
have run the whole Arctic model with data assimilation 
from year 2000 to 2016 and used the assimilated whole 
Arctic model data for high-resolution initial conditions. 

The results of the 5days in freezing season (10 to 15 
October 2015), initialized with data assimilated results, 
forecasted ice edge error and the hindcast ice edge error 
using ERA-Interim data is shown in Fig. 7. The average 
ice edge errors with respect to the different ice 
concentration threshold values are 15% threshold value 
13.85±5.77 km, 30% threshold value 14.84±6.78 km 
and 50% threshold value 17.12±8.61 km. Compared 
with the model alone initialized computation there is 
10% ice edge error improvement can be seen.  

Fig. 8 shows the ocean temperature difference 
between data assimilated results and model alone 
results in the Laptev Sea on 10th October 2015. It’s very 
clear that along the ice edge (Fig. 8 black contours) less 
heat in the data assimilated model compared to the 
model alone. 

Fig. 8 Ocean temperature difference (degree) between data 
assimilated model run and model alone run in the 
Laptev Sea region on 10-October-2015 (freezing 
season initial date). Black contour shows the AMSR2 
sea ice edge (concentration threshold 15%) 
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CONCLUSION 
Sea ice forecasted skill of different dataset (TIGGE) 

is evaluated in the study. The average forecast skill of 
ice-POM model in the melting season is 9.28±2.68 km 
that is in good agreement with the requirement of an 
operational ice navigation system (10 km). Also, there 
is good forecast skill (10.15±3.45 km) in the ice-POM 
model when the Arctic sea ice extent hits its annual 
minimum. However, in the freezing season ice edge 
error become 15.43±6.29 km. But after introducing the 
data assimilation into the whole Arctic model freezing 
season ice edge error improved 10% from without 
assimilated results. However, to improve the model 
forecast accuracy, the further studies would be 
necessary for the freezing season. 
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